Test Review \#3 Chapter 4A

Name \qquad
No Calculator Page (Domain for \#5 and \#6 is $\left[0^{\circ}, 360^{\circ}\right)$)

1. $\sec 90^{\circ}=$
2. $\sin 240^{\circ}$
3. $\cos \frac{3 \pi}{4}=$
4. $\sin 300^{\circ}$
5. $\sin 90^{\circ}=\tan \theta$
6. $\cos 135^{\circ}=\sin \theta$
7. Change 120° into radians in terms of π.
8. Change $\frac{7 \pi}{10}$ radians into degrees.

Suppose $\sin \theta=\frac{1}{3}$ and the terminal side of the angle lies in quadrant II. Find each value. (Hint: First draw your triangle in quadrant II !!!!)
9. $\cos \theta=$
10. $\tan \theta=$
11. $\csc \theta=$
12. $\sec \theta=$
13. $\cot \theta=$

Calculator Page

Name \qquad
14. Find $\cot 52^{\circ} 55^{\prime} 54^{\prime \prime}=$
15. Change 2.345 radians to degrees, minutes, and seconds.
16. Find one positive angle and one negative angle that are conterminal to a 200° angle.
17. Change $52^{\circ} 15^{\prime} 34^{\prime \prime}$ to radians. (Round to five decimal places)
18. Solve the triangle. Round the sides and angles to the nearest tenth.

$$
\begin{array}{ll}
\mathrm{B}=90^{\circ}, \mathrm{a}=3 \mathrm{ft}, \mathrm{~b}=7 \mathrm{ft} . & \text { Find each. } \\
& \mathrm{C}= \\
& \mathrm{c}=
\end{array}
$$

19. What is the maximum value that $\cos \theta$ can be? Why?

No Calculator Page

20. Where do the trigonometry functions come from?
21. At what angles is tangent undefined? Why?
22. Find two, one positive and one negative, angles coterminal to $\frac{\pi}{8}$.
23. Find the point on the circle given the central angle in standard positon and the radius.
a. $\theta=30^{\circ}, r=8$
b. $\theta=300^{\circ}, r=10$
c. $\theta=405^{\circ}, r=4$
d. $\theta=-120^{\circ}, r=5$
e. $\theta=\frac{3 \pi}{4} \quad, r=5$
f. $\theta=\frac{11 \pi}{6}, r=7$

Calculator Page

24. Find the reference angle for an angle of 192°.
25. Find the reference angle for an angle of 482°.
26. What is a radian?
27. $\operatorname{Cos}(2.345)=$
28. What is the maximum value that $\sin \theta$? Why?
29. How do you know when to use the unit circle, 30-60-90 degree triangle or the 45-45-90 degree triangle when solving trigonometric functions?
30. Change $\frac{7 \pi}{5}$ radians into degrees, minutes, and seconds.
